The retinoblastoma-like protein p130 is involved in the determination of reserve cells in differentiating myoblasts

نویسندگان

  • Gilles Carnac
  • Lluis Fajas
  • Aurore L’honoré
  • Claude Sardet
  • Ned J.C. Lamb
  • Anne Fernandez
چکیده

During skeletal muscle differentiation, a subset of myoblasts remains quiescent and undifferentiated but retains the capacity to self-renew and give rise to differentiating myoblasts [1] [2] [3]: this sub-population of muscle cells was recently termed 'reserve cells' [3]. In order to characterise genes that can regulate the ratio between reserve cells and differentiating myoblasts, we examined members of the retinoblastoma tumor suppressor family - Rb, p107 and p130 - an important family of negative regulators of E2F transcription factors and cell cycle progression [4]. Although pRb and p107 positively regulate muscle cell differentiation [5] [6] [7], the role of p130 in muscle cells remains unknown. We show here that p130 (protein and mRNA), but neither pRb nor p107, preferentially accumulates during muscle differentiation in reserve cells. Also, p130 is the major Rb-family protein present in E2F complexes in this sub-population of cells. Although forced expression of either p130 or pRb in mouse C2 myoblasts efficiently blocked cell cycle progression, only p130 inhibited the differentiation program. Furthermore, muscle cells overexpressing p130 had reduced levels of the muscle-promoting factor MyoD. In addition, p130 repressed the transactivation capacity of MyoD, an effect abolished by co-transfection of pRb. Thus, we propose that p130, by blocking cell cycle progression and differentiation, could be part of a specific pathway that defines a pool of reserve cells during terminal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit

The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of m...

متن کامل

Regulation of E2F4 mitogenic activity during terminal differentiation by its heterodimerization partners for nuclear translocation.

E2F/DP heterodimers play a pivotal role in the regulation of cell growth and differentiation. A decrease in E2F/DP activity occurs during cell cycle arrest and differentiation. However, very little is known about the specific role of the various E2F/DP members along the transition from proliferation to terminal differentiation. We have previously shown that E2F4 accounts for the vast majority o...

متن کامل

Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins

The retinoblastoma (RB) protein is present at low levels in early mouse embryos and in pluripotent P19 embryonal carcinoma cells; however, the levels of RB rise dramatically in neuroectoderm formed both in embryos and in differentiating cultures of P19 cells. To investigate the effect of inactivating RB and related proteins p107 and p130, we transfected P19 cells with genes encoding mutated ver...

متن کامل

Pocket protein p130/Rb2 is required for efficient herpes simplex virus type 1 gene expression and viral replication.

We have reported previously that herpes simplex virus type 1 (HSV-1) infection disrupts normal progression of the mammalian cell cycle, causing cells to enter a G(1)-like state. Infected cells were characterized by a decline in cyclin-dependent kinase 2 (CDK2) activities, loss of hyperphosphorylated retinoblastoma protein (pRb), accumulation of E2F-pocket protein complexes, and failure to initi...

متن کامل

Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors.

AFX-like Forkhead transcription factors, which are controlled by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, are involved in regulating cell cycle progression and cell death. Both cell cycle arrest and induction of apoptosis are mediated in part by transcriptional regulation of p27(kip1). Here we show that the Forkheads AFX (FOXO4) and FKHR-L1 (FOXO3a) also directly c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000